Drone wars: How UAVs became a decisive factor in the Russo-Ukrainian war

Often, very old tactics come to the rescue, such as suppressive fire from small arms. After the onset of Shahed attacks, a guide on choosing the aiming point to hit a kamikaze drone began circulating on Ukrainian social media. Similar (though much less detailed) guides were distributed to Soviet soldiers during World War II.
It is challenging for a lone shooter to hit a flying drone, especially at night (although it is possible with the help of a thermal imager, as the Russians found out in the fight against the Baba-Yaga). However, creating a hail of bullets in the drone's path allows it to be shot down. Another revived ADS from archival reels is multi-barreled installations assembled from Maxim machine guns (once used by the Soviet and Finnish armies).
These and other Ukrainian ADS are organized into mobile groups that promptly move into the flight paths of Shaheds. For ease of shooting, these groups use spotlights, reminiscent of the 1940s London Blitz. In turn, the Russians are reviving “anti-aircraft towers“ used to defend German cities from Allied air raids—only now, instead of anti-aircraft guns, they mount Pantsir-S SAM system on towers around Moscow.
Electronic Warfare
However, alongside the “old-school” methods of countering drones, modern ones are also being widely used, primarily those relating to electronic warfare systems (EWS). In this regard, the Russians also had a significant edge, as “large” EWSs had been continuously developed in Russia over the past decades. However, powerful systems proved insufficient across thousands of kilometers of the front: even from such critical directions as the left bank of the Dnieper, Russian soldiers report that “we either have no EWS, or [the Ukrainian drones] just ignore it.”
Moreover, EWSs do not always fulfill their direct function (a good example is the destruction of a Strizh EWS installation, designed to counter drones, by an FPV drone). When a Russian EWS does work, its victims often include “our own planes and copters.” However, despite the shortcomings, British experts estimated this spring that a significant portion of Ukrainian drone losses, numbering up to 10,000 drones per month, can be attributed to Russian EWS.
Nevertheless, the shortage of “large” EW systems forces Russian and Ukrainian soldiers to acquire small, or “trench,” EWSs, either buying them at their own expense or receiving them from volunteers. Electromagnetic anti-drone guns, which can disrupt the connection between the drone and the operator, have become prevalent in this category. A drone that has lost control often hovers in one place, making it relatively easy to bring down with small arms or even a stick.
However, anti-drone guns do not provide a 100% guarantee of neutralizing enemy copters and are also ineffective against FPV drones that approach the target quickly and from unexpected angles. Therefore, the military seeks to acquire “dome” electronic warfare assets whose action extends in all directions. A widely known example is the Russian Volnorez and Triton systems, recommended for installation on armored vehicles alongside protective screens.
However, even armored vehicles with installed electronic warfare systems will not be completely protected from drone attacks. According to the assessment of Ukrainian military specialist Sergey “Flash” Beskrestnov, the average effectiveness of such solutions is 30–35%. The task is complicated by the fact that the adversary can simply change the frequencies on which FPV drones operate, rendering most electronic warfare devices useless.
According to Beskrestnov, the AFU are equipped with less than 20% of the required systems, both large and small. As one way to address this issue, Beskrestnov suggests employing frequency analyzers. While these analyzers don't provide protection against drones, they play a crucial role in detecting drone presence by analyzing the frequency each drone operates on. Comparable systems are also being distributed by Russian pro-military volunteers.
The shortage of electronic warfare assets on the front line may be explained in part by their active use for protecting facilities located in the rear against strategic drones. The Russian Ministry of Defense regularly reports on suppressing AFU drones over the territory of Russia and Crimea using electronic warfare systems. The consequences of such suppresion became evident in a particular case when a kamikaze drone, presumably losing control due to the influence of an electronic warfare system, crashed into a residential building in Tula. In Ukraine, a system called Pokrova is being developed, which is intended to protect Ukrainian cities from drones and cruise missiles by suppressing or spoofing GPS navigation systems.
In conclusion, it can be said that both drones and anti-drone equipment are constantly evolving, transforming certain aspects of warfare beyond recognition. This process may be discussed endlessly—this article, for instance, does not touch upon the vast topics of maritime and ground drones. Although the notion of absolute drone dominance on the battlefield may be somewhat overestimated, one cannot deny their significant impact on military operations—as well as the fact that superiority in UAVs for one side will increase its chances of victory. This applies not only to the Russo-Ukrainian war but also to any other potential conflicts.