Дата
Автор
The Insider
Источник
Сохранённая копия
Original Material

Ученые впервые увидели, как остаток взорвавшейся звезды засасывает материю. Это может быть черная дыра или нейтронная звезда


Астрономы пронаблюдали процесс падения вещества на черную дыру или нейтронную звезду с выделением большого количества энергии, что подтверждает образование компактного объекта (нейтронной звезды или черной дыры) в двойной системе, один из компонентов которой стал сверхновой. На протяжении десятилетий астрономы надеялись найти прямые наблюдательные доказательства этого звездного процесса. И теперь они, похоже, найдены.

В мае 2022 года южноафриканский астроном-любитель Берто Монар обнаружил сверхновую SN 2022jli, вспыхнувшую в галактике NGC 157 на расстоянии около 75 миллионов световых лет от Земли.

После этого за ней начали наблюдение две команды астрономов с помощью двух телескопов — «Очень большого телескопа» (Very Large Telescope VLT) и «Телескопа новой технологии Европейской Южной Обсерватории (New Technology Telescope NTT). Вскоре они обнаружили ункальное поведение сверхновой: по мере того, как яркость сверхновой начала, как и ожидалось, снижаться, она внезапно начала демонстрировать периодическое 12-дневное усиление и затухание.

Как рождаются черные дыры и нейтронные звезды

Сверхновая — это результат взрыва звезды в конце ее жизненного цикла. После взрыва в результате гравитационного коллапса ядра остается сверхплотное ядро, или компактный остаток звезды. В зависимости от того, насколько массивной была звезда, компактный остаток будет либо нейтронной звездой — объектом настолько плотным, что чайная ложка его материала весила бы на Земле около триллиона килограммов, либо черной дырой. И нейтронная звезда, и черная дыра имеют очень сильное гравитационное поле. Гравитационное притяжение черной дыры настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света, в том числе кванты самого света.

В прошлом астрономы находили множество подсказок, намекающих на эту цепочку событий, например, обнаружили нейтронную звезду в Крабовидной туманности — газовом облаке, оставшемся после взрыва звезды около тысячи лет назад. Но они никогда раньше не видели, как этот процесс происходит в реальном времени, а значит, прямых доказательств того, что сверхновая оставляет после себя компактный остаток, до сих пор не было.

«В нашей работе мы устанавливаем такую прямую связь», — говорит Пинг Чен, научный сотрудник Института науки Вейцмана (Израиль) и ведущий автор исследования, опубликованного 10 января в журнале Nature и представленного на 243-м заседании Американского астрономического общества в Новом Орлеане (США).

Что обнаружили ученые

После взрыва яркость большинства сверхновых просто исчезает со временем; астрономы наблюдают плавное, постепенное снижение «кривой свечения» звезды. Но поведение SN 2022jli очень своеобразно: общая яркость уменьшается не плавно, а колеблется вверх-вниз в среднем каждые 12,4 дня.

Такое поведение может быть объсняться наличием более чем одной звезды в системе SN 2022jli. Массивные звезды часто вращаются с звездой-компаньоном на орбитах вокруг общего центра тяжести, такие системы из двух звезд называются бинарными или двойными. Однако в этой системе примечательно то, что звезда-компаньон, похоже, пережила смерть своего партнера, и два объекта — компактный остаток от взрыва и компаньон — скорее всего, продолжали вращаться друг вокруг друга.